cctbx news: Phil and friends

Ralf W. Grosse-Kunstleve, Pavel V. Afonine, Nicholas K. Sauter and Paul D. Adams,
Computational Crystallography Initiative, Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
BLDG 64R0121, Berkeley, California 94720-8118., USA - Email : RWGrosse-Kunstleve(@lbl.gov ;
WWW: http.//cci.lbl.gov/

Abstract

We describe recent developments of the Computational Crystallography Toolbox.

Preamble

In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64
Unix). All example scripts shown below were tested with cczbx build 2005 01 22 0855.

In the following we refer to our articles in the previous issues of this newsletter as "Newsletter No. 1",
"Newsletter No. 2", etc. to improve readability. The full citations are included in the references section.

1 Introduction

The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source
component of the Phenix project (http://www.phenix-online.org/). Currently much energy is devoted to
implementing a streamlined command-line interface to the Phenix refinement algorithms. In this article
we describe the new Python-based hierarchical interchange language (Phil) that was developed for this
purpose. Other important developmemts highlighted below are our implementation of cartesian dynamics
simulated annealing for macromolecular structure refinement, the significant enhancements of the
iotbx.reflections statistics command, the new C++ and Python interfaces to the CCP4 MTZ
library, and the inclusion of PyCifRW in the cctbx bundles available for download.

The command-line interface to the Phenix refinement algorithms is called phenix.refine. The
refinement algorithms require a structural model, xray data and optionally experimental phase
information, typically in the form of Hendrickson-Lattman coefficients. For macromolecular refinement
the ratio of experimental observations to refinable parameters is typically quite low. Geometry restraints
have to be included in order to make the refinement stable. Finally, the refinement algorithms introduce a
large number of parameters, such as the number of refinement cycles to run, parameters for bulk-solvent
correction, simulated annealing, etc. In our current development version the number of parameters
including file names and data labels is already greater than 100. This number is likely to increase
significantly as we add more features in the future.

In previous issues of this newsletter we have described comprehensive utilities for reading reflection files
(Newsletter No. 3), processing of structural data formatted as PDB files integrated with the handling of
geometry restraints based on the CCP4 Monomer Library (Newsletter No. 4). However, until recently we
had only ad-hoc solutions for the handling of the large number of algorithmic parameters.
phenix.refine is written in Python (with C++ extensions for numerically intensive algorithms, see
Newsletter No. 1). Therefore it was quite natural for us to also use Python to define parameters. For
example, Python classes are quite convenient for organizing parameters:
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from libtbx import introspection

class cartesian dynamics:
def init (self, temperature = 300,
number of steps = 200,

time step = 0.0005) :
introspection.adopt init args ()
class simulated annealing:
def init (self, do simulated annealing = False,
start temperature = 2500,
final temperature = 300,
cool rate = 25,
number of steps = 25,
time step = 0.0005,
update grads shift = 0L.3)
introspection.adopt init args()
A group of parameters can then be used like this:
my cartesian dynamics params = cartesian dynamics (number of steps=300)
my simulated annealing params = simulated annealing(final temperature=200)

some_algorithm(
cartesian dynamics params=my cartesian dynamics params,
simulated annealing params=my simulated annealing params)

With:

def some algorithm(
cartesian dynamics params,
simulated annealing params) :
print cartesian dynamics params.temperature
print cartesian dynamics params.number of steps
print simulated annealing params.start temperature
print simulated annealing params.final temperature

the output is:

300
300
2500
200

This shows that we retain the default values for temperature and start temperature, but override the
values for number of steps and final temperature.

2 Management of parameters: Phil is your friend

One obvious problem of the approach to parameter management outlined above is that it requires
familiarity with the Python syntax. While Python is arguably one of the most elegant programming
languages, it still has too much syntax for non-programmers. E.g. all Python string literals have to be in
quotes and indentation is syntactically significant. It also appeared difficult to implement the advanced
parameter management features introduced below working exclusively with Python syntax. Therefore we
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have replaced the Python syntax with the new Phil syntax to make parameter management as simple as
possible. The Phil equivalent of the examples above is:

refinement.cartesian dynamics {
temperature = 300
number of steps = 200
time step = 0.0005

}

refinement.simulated annealing {
do_simulated annealing = False
start temperature = 2500
final temperature = 300
cool rate = 25
number of steps = 25
time step = 0.0005
update grads shift = 0.3

The Phil syntax has only two main elements, phil.definition (€.g. cool rate=25 and phil.scope
(e.g. simulated annealing { }). To make this syntax as user-friendly as possible, strings do not have
to be quoted and, unlike Python, indentation is not syntactically significant. E.g. this:

refinement.xray data {
file name = "peak.mtz"
labels = "Fobs" "SigFobs"

is equivalent to:

refinement.xray data {
file name=peak.mtz
labels=Fobs SigFobs

}

Scopes can be nested recursively. The number of nesting levels is limited only by Python's recursion limit
(default 1000). To maximize convenience, nested scopes can be defined in two equivalent ways. For
example:

refinement {
xray data {
}

is equivalent to:

refinement.xray data ({

}
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2.1 Beyond syntax

Phil is more than just a parser for a very simple, user-friendly syntax. Major Phil features are:

e The concepts of master files and user files. The syntax for the two types of Phil files is
identical, but the processed Phil files are used in different ways. L.e. the concepts exist only
at the semantical level. The "look and feel" of the files is uniform.

e Interpretation of command-line arguments as Phil definitions.

e Merging of (multiple) Phil files and (multiple) Phil definitions derived from command-line
arguments.

e Automatic conversion of Phil files to pure Python objects equivalent to instances of ad-hoc
Python parameter classes like the examples shown in the introduction. These pure Python
objects are completely independent from the Phil system.

. The reverse conversion of (potentially modified) pure Python objects back to Phil files.
This could also be viewed as a Phil pretty printer.

. Shell-like variable substitution using $var and ${var} syntax.

. include syntax to merge Phil files at the parser level.

2.2 Master files

The master files are written by the software developer and include "attributes" for each parameter, such as
the type (integer, floating-point, string, unit cell, etc.) and support information for graphical interfaces.
For example:

refinement.crystal symmetry {

unit cell=None
.type=unit cell
.help="Unit cell parameters."
.input size = 40
.expert level = 0

space group=None
.type=space group
.help="Space group symbol or number."
.input size = 20
.expert level = 0

To see the full set of "attributes" for all phenix.refine parameters run this command:

iotbx.phil --show all attributes $MMTBX DIST/mmtbx/refinement/ init .params

The output is not shown because it is more than 1000 lines long (and still growing). Fortunately, the end-
user does not have to be aware of these long master files.
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2.3 User files

User files are typically generated by the application, e.g.

phenix.refine --show defaults

will process the master file. (Since phenix is not open source this command is not available in a plain
cctbx installation.) This command will list only the most relevant parameters, classified by the software
developer as .expert level = 0. For example:

refinement.crystal symmetry {
unit cell = None
space _group = None

}

The attributes are not shown. Therefore the output is much shorter compared to the iotbx.phil output
above. Currently the output contains only 53 lines with 35 definitions.

2.4 Command-line arguments + Phil

In theory the user could save and edit the generated parameter files. However, in most practical situations
this is not necessary for two reasons.

Firstly, phenix.refine (and in the future other cctbx and Phenix applications) inspects all input files and
uses the information found to fill in the blanks automatically. For example the unit cell is copied from the
input PDB file or, if this information is missing in the PDB file, from a reflection file. This is not only
convenient, but also eliminates the possibility of typing errors.

Secondly, command-line arguments that are not file names or options prefixed with —- (like —-
show _defaults above) are given to Phil for examination. E.g., this is a possible command:

phenix.refine peak.mtz model.pdb number of macro cycles=10

Assume the first two arguments can be opened as files (the file names may be specified in any order;
phenix.refine detects the file types automatically). Also assume that a file with the name
number of macro cycles=10 does not exist. This argument will therefore be interpreted with Phil.

2.5 Merging of Phil objects

The Phil parser converts master files, user files and command line arguments to uniform Phil objects
which can be merged to generate a combined set of "effective" parameters used in running the
application. We demonstrate this by way of a simple, self-contained Python script with embedded Phil
syntax:

import iotbx.phil

master params = iotbx.phil.parse ("""
refinement.crystal symmetry {
unit cell = None
.type=unit cell
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space _group = None
.type=space group
}

mwn ")

user params = iotbx.phil.parse ("""
refinement.crystal symmetry {
unit cell = 10 12 12 90 90 120
space _group = None

}

nwn ")

command line params = iotbx.phil.parse (
"refinement.crystal symmetry.space group=19")

effective params = master params.fetch (
sources=[user params, command line params])
effective params.show ()

The master params define all available parameters including the type information. The user params
override the default unit cell assignment but leave the space group undefined. The space group symbol
is defined by the command line argument. effective params.show () produces:

refinement.crystal symmetry {
unit cell = 10 12 12 90 90 120
space_group = 19

}

Having to type in fully qualified parameter names (e.g. refinement.crystal symmetry.space group)
can be very inconvenient. Therefore Phil includes support for matching parameter names of command-
line arguments as substrings to the parameter names in the master files:

import libtbx.phil.command line

argument interpreter = libtbx.phil.command line.argument interpreter (
master params=master params,
home scope="refinement")

command line params = argument interpreter.process(
arg="space_group=19")

This works even if the user writes just group=19 or even e gr=19. The only requirement is that the
substring leads to a unique match in the master file. Otherwise Phil produces a helpful error message. For
example:

argument interpreter.process ("u=19")

leads to:

UserError: Ambiguous parameter definition: u = 19
Best matches:
refinement.crystal symmetry.unit cell
refinement.crystal symmetry.space group
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The user can cut-and-paste the desired parameter to edit the command line for another trial to run the
application.

2.6 Conversion of Phil objects to pure Python objects

The Phil parser produces objects that preserve most information generated in the parsing process, such as
line numbers and parameter attributes. While this information is very useful for pretty printing (e.g. to
archive effective parameters) and the automatic generation of graphical user interfaces, it is only a burden
in the context of core numerical algorithms. Therefore Phil supports "extraction" of light-weight pure
Python objects from the Phil objects. Based on the example above, this can be achieved with just one line:

params = effective params.extract ()

We can now use the extracted objects in the context of Python:

print params.refinement.crystal symmetry.unit cell
print params.refinement.crystal symmetry.space group

Output:

(10, 12, 12, 90, 90, 120)
P 21 21 21

At first glance one may almost miss that something significant has happened. However, we started out
with "space group=19" and now we see P 21 21 21 in the output. This is because the space group
parameter was defined to be of .type=space group in the master file. Associated with each type are
converters to and from corresponding Python objects. In this case, the space group converter produces a
Python object of type:

print repr (params.refinement.crystal symmetry.space group)

Output:

<cctbx.sgtbx.space group info instance at Oxb64edfé6c>

This object cannot only show the space group symbol, but has many other "methods". E.g. to print the list
of symmetry operations in "xyz" notation:

for s in params.refinement.crystal symmetry.space group.group () :
print s
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Output:

XrYr2

x+1/2,-y+1/2,-z
-x,y+1/2,-z+1/2
-x+1/2,-y,2+1/2

2.7 Conversion of Python objects to Phil objects

Phil also supports the reverse conversion compared to the previous section, from Python objects to Phil
objects. For example, to change the unit cell parameters:

from cctbx import uctbx

params.refinement.crystal symmetry.unit cell = uctbx.unit cell(
(10,12,15,90,90,90))

modified params = master params.format (python object=params)

modified params.show ()

Output:

refinement.crystal symmetry {
unit cell = 10 12 15 90 90 90
space group = "P 21 21 21"

}

We need to bring in the master params again because all the meta-information was lost in the
extract () step that produced params. Again, a type-specific converter is used to produce a string for
each Python object. We started out with space group=19 but get back space group = "p 21 21 21"
because we chose to make the converter work that way.

2.8 Extending Phil

The astute reader may have noticed that we used both 1ibtbx.phil and iotbx.phil. Why does Phil
appear to have two homes?

The best way to think about Phil is to say "Phil is libtbx.phil." The basic Phil objects storing the parsing
results (phil.definition and phil.scope), the tokenizer, parser and the command line support are
implemented in the 1libtbx.phil module. iotbx.phil extends Phil by adding two new types,
unit cell and space group. The converters for these types can be found in
$TOTBX DIST/iotbx/phil.py. For example, this is the code for the unit cell converters:

class unit cell converters:

def  str (self): return "unit cell"
def from words (self, words, master) :
s = libtbx.phil.str from words (words=words)
if (s is None): return None
return uctbx.unit cell (s)
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def as words(self, python object, master):
if (python object is None):
return [tokenizer.word(value="None") ]
return [tokenizer.word(value="%.10g" $ V)
for v in python object.parameters ()]

Arbitrary new types can be added to Phil by defining similar converters. If desired, the built-in converters
for the basic types (int, float, str, etc.) defined in 1ibtbx.phil can even be replaced. All converters
have to have str (), from words() and as words () methods. More complex converters may
optionally have a non-trivial _init () method (an example is the choice converters class in
SLIBTBX DIST/libtbx/phil/ init_ _.py).

The iotbx.phil.parse () function used in the examples above is a very small function which adds the
unit cell and space group converters to Phil's default converter registry and then calls the main
libtbx.phil.parse () function to do the actual work. Following the example of iotbx.phil it should
be straightforward to add other domain-specific types to the Phil system.

2.9 Variable substitution

Phil supports shell-like variable substitution using $var and ${var} syntax. A few examples say more than
many words:

import libtbx.phil

params = libtbx.phil.parse ("""
root name = peak
file name $root name.mtz
full path = SHOME/S$file name

related file name = ${root name} data.mtz
message = "Reading $file name"
as is = ' $file name '

nwn ")

params. fetch (source=params) .show ()

Output:
root name = peak
file name = "peak.mtz"
full path = "/net/cci/rwgk/peak.mtz"
related file name = "peak data.mtz"
message = "Reading peak.mtz"
as is = ' $file name '

Note that the variable substitution does not happen during parsing. The output of params.show () is
identical to the input. In the example above, variables are substituted by the fetch () method that we
introduced earlier to merge user files given a master file.
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2.10 Phil odds and ends

Phil also supports merging of files at the parsing level. The syntax is simply include file name.
include directives may appear inside scopes to enable hierarchical building of master files without the
need to copy-and-paste large fragments explicitly. Duplication appears only in automatically generated
user files. I.e. the programmer is well served because a system of master files can be kept free of large-
scale redundancies that are difficult to maintain. At the same time the end user is well served because the
indirections are resolved automatically and all parameters are presented in one uniform view.

Variable substitution and include directives smell almost like programming. However, there is a line that
Phil is never meant to cross: flow control is not a part of the syntax. It is hard to imagine that a fully
featured programming language could be syntactically simpler than Python. For example, there are good
reasons why Python string literals have to be quoted. Otherwise Python scripts would be full of $ signs
because some method is needed to distinguish strings from variable names. On the other hand, having to
quote space group symbols in parameter files is a nuisance. In the future we may extend Phil as an
interchange format for data other than parameters but for our programming needs we feel extremely well
served by Python.

3 Refinement tools

3.1 mmtbx.refinement.f_model.manager

The goal of crystallographic structure refinement is to optimize a set of model parameters such that the
model predictions best fit the experimental observations. In our terminology, model goes beyond atomic
coordinates, displacement parameters and occupancies. A complete macromolecular model generally also
includes other contributions such as scale factors, bulk-solvent correction and anisotropy correction.
Furthermore, all modern refinement programs include facilities for cross-validation (e.g. for the
calculation of the R-free).

The phenix.refine command mentioned earlier is based on the mmtbx (Macromolecular toolbox)
module of the cctbx. The mathematical foundation of the mmtbx model parameterization is described in
Afonine et al. (2005). It is summarized in this formula:

B 2
Fmodel — kexp(— ht Uamso h){Fcalc + ksol exp(_ SZS ijask]

where £ is the overall scale factor (Sheriff & Hendrickson, 1987), F®* are structure factors calculated

from the atomic model, k,; and By, are bulk-solvent parameters (Jiang & Briinger, 1994), F™* are

structure factors calculated from a molecular mask, h is a column vector with the Miller indices of a
reflection, h' is its transposed vector, and U is the overall anisotropic scale matrix (6 components).

aniso

During refinement, F™*'is usually calculated many times in different contexts, many parameters are

updated at different schedules, and various statistics are printed repeatedly to report the refinement
progress. Moreover, some refinement strategies require complete sets of intermediate parameters to be
stored for later reference. To meet these needs in a general and reusable way, all model parameters for the
crystallographic contribution  to the  refinement  target  are grouped by  the
mmtbx.refinement.f model.manager class. In the following we develop a self-contained Python script
to highlight major features of this class. Since we need data to work with, but also want the example to be
self-contained, we start by generating a random structure:

78



from cctbx.development import random structure
from cctbx import sgtbx

space group info = sgtbx.space group info (
symbol="P212121")
n _sites = 500

structure = random structure.xray structure (
space group info = space group info,
elements = ["N"]*(n sites),

volume per atom 50,
anisotropic flag = False,
random u_iso = True)

We use this structure to compute ideal observations £ obs:

d min = 2.0

f obs = abs(structure.structure factors (
d min = d min,
anomalous flag = False) .f calc())

Next we introduce two types of errors: missing atoms and coordinate errors with a certain max_shift:

from cctbx import xray

fraction missing = 0.1
max shift = 0.2
n keep = int(round(structure.scatterers() .size()

* (l-fraction missing)))
partial structure = xray.structure (
special position settings=structure)
partial structure.add scatterers(
structure.scatterers () [:n_keep])
partial structure.replace scatterers
partial structure.random shift sites(
max shift cart=max shift) .scatterers())

As before we compute structure factors, this time for the partial structure:

f calc = partial structure.structure factors
d min = d min,
anomalous flag = False) .f calc()

For our demonstration we need an array of R-free flags (also known as a test set). We could generate the
R-free flags in one line, but we break the code up for clarity:

from cctbx.array family import flex

n reflections = £ calc.data() .size()
partitioning = flex.random permutation(size=n reflections) % 10

At this point partitioning is an integer array with randomly assigned but uniformly distributed values
from 0 to 9. Insert print list (partitioning) to display the array. The next line turns this integer array
into a boolean array. At the same time we build a cctbx.miller.array (Newsletter No. 1) with the same
indexing set as f obs but with the boolean array as the data:
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r free flags = f obs.array(data=(partitioning == 0))

Finally we have all the pieces we need to initialize the main object of this demonstration:

import mmtbx.refinement.f model

f model manager = mmtbx.refinement.f model.manager (

f calc = £ calc,
f obs = f obs,
r free flags = r free flags)

f model manager.show ()

The output of the show() method is:

f calc = <cctbx.miller.array object at 0xb5e9ff6c>
f obs = <cctbx.miller.array object at 0xb60el70c>
f mask = <cctbx.miller.array object at OxbSeccbd4c>
r free flags = <cctbx.miller.array object at 0xb5e9ff0c>
u_aniso = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

k sol = 0.0

b sol = 0.0

scale work 1.0

scale test = 1,0

alpha = None

beta = None

sf algorithm = None

target name = None

target functors = None

Our f model manager maintains references to the input arrays (f calc, f obs, r free flags). We also
see a new f mask array used for bulk-solvent correction and all the parameters introduced above. Some
parameters are not defined (None), but these are not needed in this example. As is, the f model manager
is already able to answer certain questions, for example, what are the current values of R-work and R-
free:

print f model manager.r work()
print f model manager.r free()

Output:

0.275794965768
0.28068823468

(The output may vary since we are working with a random structure.) More detailed information is just
waiting for us:

f model manager.r factors in resolution bins(
reflections per bin = 100,
max number of bins = 10)
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Output:

Bin Resolution No. Refl. R-factors

number range work test work test
1: 20.6581 - 3.8191 988 111 0.2778 0.2555
2: 3.8191 - 3.0344 924 114 0.2596 0.2610
3: 3.0344 - 2.6517 914 107 0.2649 0.2750
4: 2.6517 - 2.4097 899 104 0.2713 0.2887
5: 2.4097 - 2.2372 906 95 0.2856 0.2998
6: 2.2372 - 2.1054 927 80 0.2992 0.2971
7: 2.1054 - 2.0001 884 106 0.2846 0.3438

If model parameters are updated the £ model manager automatically recomputes all dependent values:

f model manager.update (
k sol = 1.2,
b sol = 30.0)

This centralized, concise facility is extremely helpful in developing new refinement strategies.

At any stage, F™*' according to the formula above, or just the bulk-solvent correction can easily be
extracted:
f model = f model manager.f model ()

f bulk = f model manager.f bulk()

Detailed and uniform statistics can easily be displayed in various contexts. For example:

f model manager.show fom phase error alpha beta in bins(
reflections per bin = 100,
max number of bins 10)

|[R-free likelihood based estimates for figures of merit, absolute phase error, |
|and distribution parameters alpha and beta (Acta Cryst. (1995). A51, 880-887) |
| |

| Bin Resolution No. Refl. FOM phase err. Alpha Beta |
| number range work test <|p-p cl|>

| 1: 20.6581 - 3.8191 988 111 0.8414 20.7174 0.9663 5782.0632|
| 2: 3.8191 - 3.0344 924 114 0.8190 23.9808 0.9663 5782.0632|
| 3: 3.0344 - 2.6517 914 107 0.8208 24.0338 0.9372 4108.1081|
| 4: 2.6517 - 2.4097 899 104 0.8058 25.6936 0.9226 3272.3595|
| 5: 2.4097 - 2.2372 906 95 0.7733 28.8366 0.9251 3055.6162|
| 6 2.2372 - 2.1054 927 80 0.7806 28.1986 0.9304 2583.5975|
|7 2.1054 - 2.0001 884 106 0.7484 31.1348 0.9304 2583.5975|

After refinement is is often very helpful to inspect electron density maps. Since the f model manager
controls all essential data for the calculation of maps, it is most natural to add a map generation method.
For example:
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fft map = f model manager.electron density map(

map type = "2m*Fobs - alpha*Fmodel")
Or:
fft map = £ model manager.electron density map (
map_ type = "k*Fobs - n*Fmodel",
k = 2,
n = 1)

To end this demonstration, we bring in the iotbx utilities for writing maps in XPLOR format:

import iotbx.xplor.map

fft map.as xplor map (
file name="2fo-fm.xplor",
title lines=["2*Fobs - Fmodel"],
gridding first=(0,0,0),
gridding last=fft map.n real())

Happy viewing! -- Well, admittedly it is not very interesting to view maps of random structures, but it
works just the same given real data and real models.

The complete script can be found in the cctbx installation:

SMMTBX DIST/mmtbx/examples/f model manager.py

3.2 Bulk-solvent correction and anisotropic scaling

In the previous issue of the Newsletter (No. 3) we briefly described a protocol for the determination of
flat bulk-solvent model parameters and anisotropic scaling parameters. In the current version of the cctbx
we have generalized this protocol significantly. The main features currently available are:

1. In addition to the least-squares target function presented before, a maximum-likelihood
crystallographic target function can be used for the determination of the bulk-solvent and scale
parameters. This enables a uniform overall strategy for maximum-likelihood model refinement
since all parameters (bulk solvent, scale and atomic) can be refined against the same target
function.

2. Three options for defining the bulk-solvent parameters (kso1, Bsol) and the anisotropic scale matrix
Uaniso:

a. Manual assignment. This is potentially useful at the beginning of structure refinement
when the model has many errors.

b. Minimization of a crystallographic target function using the LBFGS minimizer. This is a
quick and precise way of determining ko1, Bsol and Uapiso 1f @ model of reasonable quality is
available and the experimental data extend to sufficiently low resolution. However, this
algorithm fails to produce physically reasonable parameters in some situations. This
experience was the motivation for implementing the more sophisticated protocol outlined
below.

c. Combined LBFGS minimization and grid search algorithm (Afonine et al, 2005). This is
the most robust procedure for the determination of ko1, Bsor and Uqpiso. However, it is also
the most time-consuming option.

The bulk-solvent and scaling algorithms are implemented in the mmtbx.bulk solvent module.
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3.3 Simulated annealing refinement

Simulated annealing is a time-tested tool for escaping local minima in crystallographic refinement
(Briinger et al, 1987). Recently we have implemented a simulated annealing algorithm for restrained
molecular dynamics in the cctbx. This enables us to take full advantages of combined simulated annealing
and maximum-likelihood model refinement (Adams et a/, 1997; Brunger & Adams, 2002).

The simulated annealing algorithms are implemented in the mmtbx.cartesian dynamics module.

3.4 Building of hydrogen atoms

Fourier syntheses at subatomic resolution (dmin < 1.0 A) usually reveal the presence of hydrogen atoms.
At lower resolutions this information is lost. Therefore a general refinement program has to provide
different strategies depending on the resolution of the data. If ultra-high resolution data are available,
hydrogens can be explicitly included in the refinement, for example using the riding hydrogen model
(Sheldrick, 1995). At lower resolutions the inclusion of hydrogens in the refinement target for the X-ray
data is likely to lead to overfitting. However in this case the hydrogens should still be considered in the
definition of the geometry restraints, and this has been shown to improve atomic models even in the
absence of atomic resolution data (Richardson et al. 2003). In addition, refinement against neutron
diffraction data requires appropriate modeling of hydrogen atoms.

As a first step towards covering these cases we have implemented a hydrogen building procedure for the
standard amino acid residues. In most cases the hydrogen positions are geometrically well defined.
However, there are some cases where the positions are not unambiguously determined, such as -CH3, -
OH in a tyrosine residue. To account for this, our procedure consists of two steps. In the first step we
place all expected hydrogen atoms in appropriate positions. If ambiguities exist, we place the affected
hydrogens arbitrarily in a one of the allowed positions. In the second step we perform model
regularization by refinement against geometry restraints (see Newsletter No. 4). Optionally, this can be
combined with Cartesian dynamics to escape from local minima.

The hydrogen building algorithms are implemented in the mmtbx.hydrogens module.

3.5 Maximum-likelihood tools

Previously we had implemented an amplitude-based maximume-likelihood target function (Lunin et al,
2002), its quadratic approximation (Lunin & Urzhumtsev, 1999), and a procedure for estimating the
distribution parameters (alpha, beta) according to Lunin & Skovoroda (1995). Recently we have extended
the set of maximum-likelihood tools by these methods:

R-free likelihood-based estimation of model phase errors and figures of merit

This procedure is based on the algorithm described by Lunin & Skovoroda (1995). The mean phase errors
and figures of merit are determined in narrow resolution bins using test reflections only. The procedure
provides relatively precise and unbiased values for these parameters. The algorithms are available via
methods of the mmtbx.refinement.f model.manager class introduced in section 3.1, e.g.:

figures of merit = f model manager.figures of merit ()
phase errors = f model manager.phase errors()
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Coefficients for Fourier Syntheses

It was straightforward to implement the calculation of “best” coefficients for Fourier syntheses,
[ZmSFS"bs - asl'ﬂsmodel]exp(i(pfa":), where m_ are figures of merit and «, = <cos(s, Ar)> (Urzhumtsev et al.,

1996; Read, 1986 uses the notationD ). The £ model manager.electron density map() method
demonstrated in section 3.1 provides an interface to these algorithms.

Use of Experimental Phase Information

We are actively working on fast C++ code for a maximum-likelihood target which includes experimental
phase information (MLHL target; Pannu et al, 1998). This code is in the cctbx bundles already but not yet
fully tested.

4 iotbx.reflection_statistics

Recently we have enhanced the iotbx.reflection statistics command significantly. The initial
version (written in April 2004) can be used to compute data completeness, anomalous signals,
correlations between intensities and correlations between anomalous signals of pairs of reflection arrays.
All these statistics are computed both in resolution shells and as overall quantities. The latest version
(written in December 2004) adds these new features:

e Automatic determination of the space group of the metric (i.e. the lattice symmetry; see
also Newsletter No. 3).

e Automatic derivation of a non-redundant set of possible twin laws from first principles
(Flack, 1987).

e Automatic derivation of a non-redundant set of possible reindexing matrices for comparing
two datasets. The matrices are derived from first principles (see below).

e Computation of a sorted list of peaks in the native Patterson synthesis to facilitate the
detection of translational non-crystallographic symmetry (NCS).

e Tests for perfect merohedral twinning using both the second moments of amplitudes (also
known as Wilson ratios) and intensities (Yeates, 1997).

With the old version of the iotbx.reflection statistics command correlations between pairs of
reflection arrays are computed only if the unit cell parameters and the space group symmetries are
identical. The new version is designed to overcome this limitation in the most general way. Internally, all
arrays are transformed to a primitive setting. The change-of-basis matrices are determined with a cell
reduction algorithm (see Newsletter No. 3). Each array in the primitive setting is expanded to P1. L.e. the
symmetry matrices are applied to generate all equivalent Miller indices. Given a pair of reflection arrays
preprocessed in this way, a newly developed algorithm performs an exhaustive search for the change-of-
basis matrix that leads to the best superposition of the reduced unit cells. This algorithm employs the new
similarity transformations/() and bases mean square difference () methods of the
cctbx.uctbx.unit cell class. Associated with each unit cell is the space group of the metric as
determined with the lattice symmetry algorithm outlined in the Newsletter No. 3. If the tolerances used in
the computation of the cell superposition are reasonable, the metric symmetries are identical, or one is a
subgroup of the other. We continue with the highest metric space group. Each symmetry operation of this
space group is a possible reindexing matrix. Conceptually, we compute the correlations between two
arrays for each reindexing matrix and produce a sorted list of the results. However, if any of the space
groups of the two input arrays are different from P1, this leads to a redundant list. The remove these
redundancies, we employ double coset decomposition (see below). To minimize the runtime, redundant
correlations are never computed.
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The algorithmic complexities are in stark contrast to the simple end-user interface. The universal
reflection file reader described in Newsletter No. 3 is used to automatically detect and process all
common file formats. A possible command for comparing reflection data is:

iotbx.reflection statistics *.sca *.mtz

For a large number of arrays this may take a couple of minutes, but the comprehensive analyses do not
require any user intervention. The potentially large output contains tags for quick searching. A guide is
printed at the beginning of the output. For example:

Array indices (for quick searching) :

1: hgl.0 scale anomalous.sca:i obs, sigma
hginfl 3.5 ano.sca:i obs, sigma
hgpeak 3.5 ano.sca:1 obs, sigma
pbl.0 4.0 ano.sca:i obs,sigma
pbpeak 3.5 scale anomalous.sca:i obs,sigma
pt 4.0 ano.sca:i obs,sigma
scale.sca:1 obs,sigma
sm_scale anomalous.sca:i obs,sigma
tmpb.sca:i obs, sigma

O 0 Jo U W

Useful search patterns are:
Summary i
CC Obs 1 j
CC Ano i j
i and j are the indices shown above.

If we search for cc obs 7 1 we find:

CC Obs 7 1 0.956 h,-k,-1
Correlation of:
scale.sca:1 obs,sigma
hgl.0 scale anomalous.sca:i obs,sigma

Overall correlation with reindexing: 0.956 h,-k,-1
unused: - 43.6948 [ 4/20 1 1.000
bin 1: 43.6948 - 8.6072 [2856/2950] 0.954
bin 2: 8.6072 - 6.8402 [2916/2924] 0.962
bin 3: 6.8402 - 5.9780 [3028/3036] 0.957
bin 4: 5.9780 - 5.4326 [2936/2948] 0.960
bin 5: 5.4326 - 5.0438 [2940/2960] 0.964
bin 6: 5.0438 - 4.7468 [2792/2818] 0.959
bin 7: 4.7468 - 4.5093 [3104/3124] 0.954
bin 8: 4.5093 - 4.3132 [2824/2842] 0.949
bin 9: 4.3132 - 4.1473 [2904/2930] 0.946
bin 10: 4.1473 - 4.0043 [2964/2990] 0.937
unused: 4.0043 - [ 24/72 1 0.904

CC Obs 71 0.364 h,k,1
Correlation of:

scale.sca:1 obs,sigma

hgl.0 scale anomalous.sca:i obs,sigma
Overall correlation: 0.364

In this example the highest correlation (0.956) between the two arrays is found with the reindexing matrix
h,-k,-1. In contrast, the correlation between the arrays as indexed originally is only 0.364.
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The iotbx.reflection statistics command is implemented in the file
$IOTBX DIST/iotbx/command line/reflection statistics.py.

4.1 Double coset decomposition

A useful summary of the theory of double cosets can be found in An introduction to group theory by
Tony Gaglione, which is available online:

http://web.usna.navy.mil/~wdj/tonybook/gpthry/noded44 . html

Double coset decomposition is concerned with a group g and two subgroups h1 and h2. The group g is
partitioned into non-overlapping sets of symmetry operations equivalent under h1 and h2. In the context
of the algorithm outlined above, g is the highest space group of the metric. h1 and h2 are the space groups
of the arrays to be compared. Each double coset represents a reindexing choice unique under h1 and h2.
I.e. any matrix selected from a given double coset will lead to identical correlation coefficients.

If we do not care which matrix is selected from a given double coset, we arrive at a surprisingly simple
algorithm. The following is the relevant fragment from the file $cCTBX DIST/cctbx/sgtbx/cosets.py:

def double unique (g, hl, h2):
result = []
done = {}
for a in g:
if (str(a) in done): continue
result.append(a)
for hi in hl:
for hj in h2:
b = hi.multiply(a) . .multiply (hj)
done[str (b)] = None
return result

g, h1 and h2 are instances of cctbx.sgtbx.space group. The algorithm follows directly from the
definition of cosets as found at the web page referenced above:

For a, b element of g, we define a ~ b if and only if h1 a h2 =b.

hl a h2 =b corresponds to b = hi.multiply(a).multiply (hj) in the Python code.

result is a Python list of representative matrices, one from each coset. Which matrices are returned
depends on the order of the matrices in g, h1 and h2. This may not always yield the "nicest" choice.
However, any investment in a more sophisticated selection has little or no practical value. Typically the
transformed indices are mapped into a canonical asymmetric unit (e.g. using the map to asu() method
of cctbx.miller.array). After this manipulation the indexing set will be the same no matter which
matrix from a given double coset is selected.

5 iotbx.mtz

CCP4 MTZ files are binary files containing merged or unmerged reflection data and optionally
information about raw data ("batches"). For a couple of years already the cctbx has included C++ and
Python interfaces to the CCP4 C MTZ library in the iotbx.mtz module. However, while the support for
reading MTZ files was quite complete, creating and writing MTZ files was only partially supported. To
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resolve this problem and to unify the interfaces for reading and writing, the iotbx.mtz module was
heavily restructured. We have also added complete C++ and Python interfaces for the manipulation of
MTZ batches. The iotbx.mtz module extends the functionality of the CCP4 C MTZ library by

automatically grouping related MTZ columns into one object, cctbx.miller.array instances as
introduced in Newsletter No. 1.

Combined with the universal reflection file reader, it is quite easy to quickly write a script for converting
any of the formats processed by the reflection file reader to the MTZ format. First let's get some data to
work with:

from iotbx import reflection file reader
import os

reflection file = reflection file reader.any reflection file(
file name=os.path.expandvars (
"SCNS_SOLVE/doc/html/tutorial/data/pen/scale.hkl"))

We are reading a CNS reflection file in the CNS tutorial. (To run this example CNS has to be installed

including the tutorial.) Since the crystal symmetry is not defined in CNS reflection files, we supply this
information manually:

from cctbx import crystal

crystal symmetry = crystal.symmetry (
unit cell=(97.37, 46.64, 65.47, 90, 115.4, 90),
space_group symbol="C2")

We convert the reflection file to a list of cctbx.miller.array instances:

miller arrays = reflection file.as miller arrays(
crystal symmetry=crystal symmetry)

Now we loop over the Miller arrays to convert them to MTZ data columns:

mtz dataset = None
for miller array in miller arrays:
if (mtz_ dataset is None):
mtz dataset = miller array.as mtz dataset(
column root label=miller array.info () .labels[0])
else:
mtz dataset.add miller array(
miller array=miller array,
column root label=miller array.info () .labels[0])

Let's see what we got:

mtz object = mtz dataset.mtz object ()
mtz object.show summary ()
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The output ends with:

Column number, label, number of valid values, type:

1H 6735/6735=100.00% H: index h,k,1

2 K 6735/6735=100.00% H: index h,k,1

3L 6735/6735=100.00% H: index h,k,1

4 F PHGA 6735/6735=100.00% F: amplitude

5 SIGF PHGA 6735/6735=100.00% Q: standard deviation
6 F _KUOF 6735/6735=100.00% F: amplitude

7 SIGF _KUOF 6735/6735=100.00% Q: standard deviation
8 F NAT 6735/6735=100.00% F: amplitude

9 SIGF NAT 6735/6735=100.00% Q: standard deviation

Finally we write the MTZ file to disk:

mtz object.write("pen data.mtz")

Note that the iotbx.mtz.dump pen data.mtz command is available to produce the same output as the
mtz object.show () statement in the example.

6 Integration of PyCifRW

PyCifRW is a library for reading and writing CIF (Crystallographic Information Format) files using
Python. PyCifRW was developed by James Hester at the Australian National Beamline Facility (ANBF).
Documentation can be found online:

http://www.ansto.gov.au/natfac/ANBF/CIF/

Recently, the PyCifRW license was changed to allow redistribution. We are very excited about this
development because it allows us to include PyCifRW in the cctbx bundles. However, like the CCP4 1/0
library and Clipper (see Newsletter No. 4), PyCifRW is not in the cctbx CVS tree on SourceForge. James
Hester continues to develop PyCifRW in his own environment and we will update the cctbx bundles with
the latest releases. Currently we redistribute PyCifRW version 1.19 released in November 2004.

PyCifRW in a cctbx installation is used in the same way as described in the PyCifRW documentation.
Let's try it out. We develop a self-contained Python script by starting with embedded CIF syntax:

file("quartz.cif", "w").write("""
data global

chemical name Quartz

cell length a 4.9965

_cell length b 4.9965

_cell length c 5.4570

_cell angle alpha 90

_cell angle beta 90

_cell angle gamma 120

_symmetry space group name H-M 'P 62 2 2'

loop

_atom site label

_atom site fract x

_atom site fract y

_atom site fract z

Si 0.50000 0.00000 0.00000

0] 0.41520 0.20760 0.16667

nwn ")
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At this point we have created a file quartz.cif. Now we parse it with PyCifRW:

from PyCifRW.CifFile import CifFile

cif file = CifFile("quartz.cif")
cif global = cif file["global"]
print cif global[" chemical name"]

Output:

Quartz

Looks like a good start! But we want more. For example, structure factors. For this we have to process the
rest of the data in the CIF file. First we determine the crystal symmetry:

from cctbx import uctbx, sgtbx, crystal

unit cell = uctbx.unit cell([float (cif global [param])
for param in [
" cell length a"," cell length b"," cell length c",
" cell angle alpha"," cell angle beta"," cell angle gamma"]])
space group_ info = sgtbx.space group info (
symbol=cif global[" symmetry space group name H-M"])
crystal symmetry = crystal.symmetry (
unit cell=unit cell,
space group info=space group info)
crystal symmetry.show summary ()

Output:

Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120)
Space group: P 62 2 2 (No. 180)

Now we turn our attention to the list of coordinates and create a new cctbx.xray.structure instance:

from cctbx import xray

structure = xray.structure(crystal symmetry=crystal symmetry)
for label,x,y,z in zip(cif global[" atom site label"],

cif global[" atom site fract x"],
cif global[" atom site fract y"],
cif global[" atom site fract z"]):

scatterer = xray.scatterer(
label=1label,
site=[float(s) for s in [x,vy,z]])
structure.add scatterer (scatterer)
structure.show summary () .show scatterers ()
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Output:

Number of scatterers: 2

At special positions: 2

Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120)

Space group: P 62 2 2 (No. 180)

Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso
Si Si 3 ( 0.5000 0.0000 0.0000) 1.00 0.0000

0 0 6 ( 0.4152 0.2076 0.1667) 1.00 0.0000

Just one more hoop and we have the structure factors:

f calc = structure.structure factors(d min=2).f calc()
abs (f calc) .show summary () .show array ()

Output:

Miller array info: None

Observation type: None

Type of data: double, size=7

Type of sigmas: None

Number of Miller indices: 7

Anomalous flag: False

Unit cell: (4.9965, 4.9965, 5.457, 90, 90, 120)
Space group: P 62 2 2 (No. 180)

(1, 0, 0) 15.708493924

(1, 0, 1) 36.2626337008
(1, 0, 2) 7.77312576362
(1, 1, 0) 14.9039425672
(1, 1, 1) 0.975009858138
(2, 0, 0) 15.8407980479
(2, 0, 1) 13.6738859288

Note that this is almost what we had in Newsletter No. 1. The main difference is that we start from a CIF
file rather than the plain cctbx interfaces.

The complete script can be found in the cctbx installation:

SPYCIFRW DIST/example quartz.py
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